Marine Conservation Potential for Pearl Farming

The influence of pearl oyster farming on reef fish abundance and diversity in Ahe, French Polynesia

Laurent E. Cartier^{a,*}, Kent E. Carpenter^b

^a Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland ^b Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529-0266, USA

 Image: Special constraints
 2014. Marine Pollution Bulletin, 78(20), 43-50.

 Image: Special constraints
 Special constraints

 Image: Special constraints
 Jacques Branellec, JEWELMER
National Geographic Waitt Foundation
Josh Humbert, KAMOKA PEARLS
Andy Bardon

Content © 2014 K. Carpenter, unless otherwise stated

Basic Question: Does Pearl Farming Impact Fish Abundance and Diversity?

Ahe lagoon with 77 farms covering 1188 ha (11% of lagoon area) Reef fishes an important component of lagoon biodiversity

- Coral Bommie unit of measurement
- Bommies adjacent to or far from farms

- Farms & fish intimately connected
- Imposing structures on reefs
- Cleaning nets potential impacts

Photo: Josh Humbert

Other factors aside 0 from farming can influence fish **Position from pass** \mathbf{O} Ocean Pearl farm Coral bommie

- Ahe lagoon very well studied
- Physical factors influencing fish communities
- Flushing rates in stationary (a) vs average trade winds (b)
- Position relative to pass

A 90 80 70 14°S 50 40 A 30.00' 30 20 10 B 14°S 30.00 30 20 18' 146°W 24 00

Dumas et al. (2012)

- Circulation patterns influence movements of fish larvae and plankton (food source)
- Position relative to pass

Larvae dynamics and exchange in Ahe lagoon. Source: Thomas et al. (2012)

14,47° S

53°

Dumas et al. (2012)

Measuring Reef Fish Abundance & Diversity • Stations chosen to represent both proximity to pass and pearl farming activity

Measuring Reef Fish Abundance & Diversity Measured using Roving Census Method • SCUBA & underwater slates

Photo: A. Bardor

Photo: A. Bardon

 Measuring Reef Fish

 Abundance & Diversity

 • Measured using roving census method

 • Timed 60 minute.

 20 meters to surface.

bommie circumnavigation

Photo: A. Bardon

Photo: A. Bardon

Results

Impacted = close to farming

- Position relative to pass
- Abundance (N) & diversity (H) coded different ways to test for robustness of census method

Table 2

Means of fish abundance $(N_{1-1000}, \sqrt{N}, N_{1-4})$ and species diversity $(H_{(N1-1000)}, H_{(\sqrt{N})}, H_{(N1-4)})$ at all censused stations (n = 16). N_{1-1000} and $H_{N1-1000}$ correspond to coding of abundance category as 1–1000 before square root transformation. \sqrt{N} and $H_{(\sqrt{N})}$ correspond to coding of abundance category as 1–1000 and transformed as a square root. N_{1-4} and $H_{(N1-4)}$ correspond to abundance coded as 1–4. The numbers in parentheses after the mean represent the number of stations sampled in the category followed by the standard deviation.

	Impacted	NoDirect Impact	NPass	SPass
N_{1-1000}	11,468 (7, 2062.29)	7591.67 (9, 1763.61)	9780.09 (11, 2708.47)	8204 (5, 2630.03)
	630.71 (7, 80.282)	512.56 (9, 73.850)	591.45 (11, 91.653)	504.40 (5, 82.494)
N ₁₋₄	174.43 (7, 10.690)	162.67 (9, 17.255)	173.55 (11, 13.359)	155.20 (5, 12.950)
H _(N1-1000)	3.100 (7, 0.141)	3.047 (9, 0.131)	3.120 (11, 0.133)	2.958 (5, 0.022)
$H_{(\sqrt{N})}$	3.831 (7, 0.068)	3.840 (9, 0.106)	3.870 (11, 0.085)	3.762 (5, 0.037)
$H_{(N1-4)}$	4.172 (7, 0.029)	4.150 (9, 0.101)	4.185 (11, 0.068)	4.104 (5, 0.069)

Total number of species observed across 16 stations was 151.

Results

2-way ANOVA (no significant interaction -> Type I) Pearl farming POSITIVELY influences fish abundance

Source	F	$\Pr > F$
N_{1-1000}		
General model	21.38	< 0.0001
N_{1-1000} (Type 1 55)		
Impact	52.12	< 0.0001
Position	19.77	0.0010**
Distance Shore	3.09	0.1064
Distance Pass	10.53	0.0078*

Results robust despite coding method

Results

2-way ANOVA (no significant interaction -> Type I) Fish diversity NOT INFLUENCED by pearl farming

Source	F	$\Pr > F$
H _(N1-1000) General model	2.70	0.0867
H _(N1-1000) (Type I SS)		
Impact	0.89	0.3653
Position	8.89	0.0125*
Distance Shore	0.12	0.7316
Distance Pass	0.88	0.3682

(actually a slight increase with impact and nonsignificance maybe because of limited sample size)

 ANOSIM results show basic community structure not impacted by Pearl Oyster Farming

Philippine Comparisons

- Preliminary data from Jewelmer Pearl Oyster Farms at Bugsuk Island: higher diversity near farms
- Need to follow up to confirm
- Roving Census Method repeatable across different geographic & times scales; powerful with sufficient sample sizes
- Pearl oyster farms:
 - Economic benefit

- Environmental awareness (Jewelmer model)
- De facto Marine Protected Areas (Enforcement)

Conclusions

- Presence of pearl farms increases local abundance of reef fishes (structures food and shelter source)
- Farms do not degrade localized diversity
- For Ahe lagoon, present farming model a positive conservation statement:
 - Farming changes local habitat but in a positive way
 - Pearl farming represents a positive conservation/ business model (product, local livelihoods, conservation ethic)

- Remaining questions:
 - Long term effects (from no farming to long term)
 - Site specific effects (Philippine follow up, elsewhere)
 - Develop pearl farming conservation ethic guidelines

Thank you!!

